BENEFITS
Your new secret weapon? Plant protein—which offers science-backed advantages you can’t get from meat.
Plant-based proteins are packed with fiber which helps regulate your blood sugar—and in turn, keeps your energy level high. Most plant proteins contain soluble fiber, which when broken down in the gut, produces short-chain fatty acids (SCFAs)—giving your energy a boost.
Increased Energy
For starters, plant-based protein options tend to have zero saturated fat—which means much less risk for triggering inflammation in the body. They also pack a power combo of antioxidants, phytonutrients and fiber—all of which have been shown to lower inflammatory markers in the body. What does this mean for you? Fueling your muscles while potentially off-setting any exercise-induced inflammation.
Better Recovery
Protein-rich plants contain certain vitamins and minerals you can’t get from meat, and they’re packed with antioxidants. These nutrients combined with essential amino acids deliver a well-rounded nutrition profile that can help boost your immunity and overall health—not to mention your athletic performance.
• For example, lentils and beans deliver iron and zinc crucial for testosterone production and oxygen transport through your body.
• Nuts and seeds not only make super snacks and can punch up a salad, but they also provide magnesium and vitamin E which have been shown to reduce exercise-induced oxidative stress—helping you recover faster.
Boosted Health
Boosting your longevity means performing better in the long run—so you can still get strong and train for life. Research shows consuming a variety of plants and plant-based proteins improves longevity markers such as:
• Reduced risk of heart disease. Plant-based diets have been shown to reduce the risk of cardiovascular disease and even lower the rate of all-cause mortality.
• Improved metabolic health. Plant-diverse diets can improve lipid profiles (lower levels of ‘bad’ LDL cholesterol and increase HDL ‘good’ cholesterol), and improve insulin sensitivity and glucose metabolism (to help stabilize blood sugar).
• Reduced risk of chronic disease. Consuming plants can help boost immunity and lower levels of inflammation in the body—which when chronic, can lead to autoimmune disease and type 2 diabetes.
Greater Longevity
For more plant-based protein information, here’s a list of several studies, stories, and resources:
Increased Energy Supply
Burke, L. M., van Loon, L. J. C., & Hawley, J. A. (2017). Postexercise muscle glycogen resynthesis in humans. Journal of Applied Physiology (Bethesda, Md. : 1985), 122(5), 1055–1067. https://doi.org/10.1152/japplphysiol.00860.2016
Jensen, J., Rustad, P. I., Kolnes, A. J., & Lai, Y. C. (2011). The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Frontiers in Physiology, 2, 112. https://doi.org/10.3389/fphys.2011.00112
Mata, F., Valenzuela, P. L., Gimenez, J., Tur, C., Ferreria, D., Domínguez, R., Sanchez-Oliver, A. J., & Martínez Sanz, J. M. (2019). Carbohydrate Availability and Physical Performance: Physiological Overview and Practical Recommendations. Nutrients, 11(5), 1084. https://doi.org/10.3390/nu11051084
Murray, B., & Rosenbloom, C. (2018). Fundamentals of glycogen metabolism for coaches and athletes. Nutrition Reviews, 76(4), 243–259. https://doi.org/10.1093/nutrit/nuy001
Roberts, A. K., Busque, V., Robinson, J. L., Landry, M. J., & Gardner, C. D. (2022). SWAP-MEAT Athlete (study with appetizing plant-food, meat eating alternatives trial) - investigating the impact of three different diets on recreational athletic performance: a randomized crossover trial. Nutrition Journal, 21(1), 69. https://doi.org/10.1186/s12937-022-00820-x
Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). American College of Sports Medicine joint position statement. Nutrition and athletic performance. Medicine and Science in Sports and Exercise, 48(3), 543–568. https://doi.org/10.1249/MSS.0000000000000852
U.S. National Library of Medicine. (n.d.-b). Carbohydrates. MedlinePlus. https://medlineplus.gov/carbohydrates.html#:~:text=Along%20with%20proteins%20and%20fat s,cells%2C%20tissues%2C%20and%20organs.
Improved Blood Flow
Barnard, N. D., Goldman, D. M., Loomis, J. F., Kahleova, H., Levin, S. M., Neabore, S., & Batts, T. C. (2019). Plant- based diets for cardiovascular safety and performance in endurance sports. Nutrients, 11(1), 130–. https://doi.org/10.3390/nu11010130
Borne, R., Hausswirth, C., & Bieuzen, F. (2017). Relationship between blood flow and performance recovery: A randomized, placebo-controlled study. International Journal of Sports Physiology and Performance, 12(2), 152–160. https://doi.org/10.1123/ijspp.2015-0779
Determinants of resistance to flow (Poiseuille’s equation). CV Physiology | Determinants of Resistance to Flow (Poiseuille’s Equation). (n.d.). https://www.cvphysiology.com/Hemodynamics/H003
El-Sayed, M. S., Ali, N., & Al-Bayatti, M. (2009). Aerobic power and the main determinants of blood rheology: is there a relationship?. Blood Coagulation & Fibrinolysis : An International Journal in Haemostasis and Thrombosis, 20(8), 679–685. https://doi.org/10.1097/MBC.0b013e3283316196
Ernst, E., Pietsch, L., Matrai, A., & Eisenberg, J. (1986). Blood rheology in vegetarians. The British Journal of Nutrition, 56(3), 555–560. https://doi.org/10.1079/bjn19860136
Ichinose, M., Ichinose-Kuwahara, T., Kondo, N., & Nishiyasu, T. (2015). Increasing blood flow to exercising muscle attenuates systemic cardiovascular responses during dynamic exercise in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309(10), R1234–1242. https://doi.org/10.1152/ajpregu.00063.2015
Mairbaeurl, H. (2013). Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Frontiers in Physiology, 4, 1–332. https://doi.org/10.3389/fphys.2013.00332
Miller, M., Beach, V., Sorkin, J. D., Mangano, C., Dobmeier, C., Novacic, D., Rhyne, J., & Vogel, R. A. (2009). Comparative effects of three popular diets on lipids, endothelial function, and C-reactive protein during weight maintenance. Journal of the American Dietetic Association, 109(4), 713–717. https://doi.org/10.1016/j.jada.2008.12.023
Lower Oxidative Stress
Barnard, N. D., Goldman, D. M., Loomis, J. F., Kahleova, H., Levin, S. M., Neabore, S., & Batts, T. C. (2019). Plant- based diets for cardiovascular safety and performance in endurance sports. Nutrients, 11(1), 130–. https://doi.org/10.3390/nu11010130
Carlsen, M. H., Halvorsen, B. L., Holte, K., Bøhn, S. K., Dragland, S., Sampson, L., Willey, C., Senoo, H., Umezono, Y., Sanada, C., Barikmo, I., Berhe, N., Willett, W. C., Phillips, K. M., Jacobs, D. R., Jr, & Blomhoff, R. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9, 3. https://doi.org/10.1186/1475-2891-9-3
Chang, W. H., Hu, S. P., Huang, Y. F., Yeh, T. S., & Liu, J. F. (2010). Effect of purple sweet potato leaves consumption on exercise-induced oxidative stress and IL-6 and HSP72 levels. Journal of Applied Physiology (Bethesda, Md. : 1985), 109(6), 1710–1715. https://doi.org/10.1152/japplphysiol.00205.2010
Clemente-Suárez, V. J., Bustamante-Sanchez, Á., Mielgo-Ayuso, J., Martínez-Guardado, I., Martín-Rodríguez, A., & Tornero-Aguilera, J. F. (2023). Antioxidants and sports performance. Nutrients, 15(10), 2371. https://doi.org/10.3390/nu15102371
Jones, D. P. (2006). Redefining oxidative stress. Antioxidants & Redox Signaling, 8(9-10), 1865–1879. https://doi.org/10.1089/ars.2006.8.1865
Knez, W. L., Coombes, J. S., & Jenkins, D. G. (2006). Ultra-endurance exercise and oxidative damage: implications for cardiovascular health. Sports Medicine (Auckland, N.Z.), 36(5), 429–441. https://doi.org/10.2165/00007256-200636050-00005
Lafay, S., Jan, C., Nardon, K., Lemaire, B., Ibarra, A., Roller, M., Houvenaeghel, M., Juhel, C., & Cara, L. (2009). Grape extract improves antioxidant status and physical performance in elite male athletes. Journal of Sports Science & Medicine, 8(3), 468–480.
Morillas-Ruiz, J. M., Villegas García, J. A., López, F. J., Vidal-Guevara, M. L., & Zafrilla, P. (2006). Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clinical Nutrition (Edinburgh, Scotland), 25(3), 444–453. https://doi.org/10.1016/j.clnu.2005.11.007
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe?. Journal of Sport and Health Science, 9(5), 415–425. https://doi.org/10.1016/j.jshs.2020.04.001
Rauma, A. L., & Mykkänen, H. (2000). Antioxidant status in vegetarians versus omnivores. Nutrition (Burbank, Los Angeles County, Calif.), 16(2), 111–119. https://doi.org/10.1016/s0899-9007(99)00267-1
Reid M. B. (2016). Redox interventions to increase exercise performance. The Journal of Physiology, 594(18), 5125–5133. https://doi.org/10.1113/JP270653
Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked?. Free Radical Biology & Medicine, 49(11), 1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
Senoner, T., & Dichtl, W. (2019). Oxidative stress in cardiovascular diseases: Still a therapeutic target?. Nutrients, 11(9), 2090. https://doi.org/10.3390/nu11092090
Yavari, A., Javadi, M., Mirmiran, P., & Bahadoran, Z. (2015). Exercise-induced oxidative stress and dietary antioxidants. Asian Journal of Sports Medicine, 6(1), e24898. https://doi.org/10.5812/asjsm.24898
Watson, T. A., Callister, R., Taylor, R. D., Sibbritt, D. W., MacDonald-Wicks, L. K., & Garg, M. L. (2005). Antioxidant restriction and oxidative stress in short-duration exhaustive exercise. Medicine and Science in Sports and Exercise, 37(1), 63–71. https://doi.org/10.1249/01.mss.0000150016.46508.a1
Decreased Inflammation
Barbaresko, J., Koch, M., Schulze, M. B., & Nöthlings, U. (2013). Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutrition Reviews, 71(8), 511–527. https://doi.org/10.1111/nure.12035
Barnard, N. D., Goldman, D. M., Loomis, J. F., Kahleova, H., Levin, S. M., Neabore, S., & Batts, T. C. (2019). Plant- based diets for cardiovascular safety and performance in endurance sports. Nutrients, 11(1), 130–. https://doi.org/10.3390/nu11010130
Centritto, F., Iacoviello, L., di Giuseppe, R., De Curtis, A., Costanzo, S., Zito, F., Grioni, S., Sieri, S., Donati, M. ., de Gaetano, G., & Di Castelnuovo, A. (2009). Dietary patterns, cardiovascular risk factors and C-reactive protein in a healthy Italian population. Nutrition, Metabolism and Cardiovascular Diseases, 19(10), 697–706. https://doi.org/10.1016/j.numecd.2008.11.009
Haghighatdoost, F., Bellissimo, N., Totosy de Zepetnek, J. O., & Rouhani, M. H. (2017). Association of vegetarian diet with inflammatory biomarkers: a systematic review and meta-analysis of observational studies. Public Health Nutrition, 20(15), 2713–2721. https://doi.org/10.1017/S1368980017001768
Hailu, A., Knutsen, S. F., & Fraser, G. E. (2006). Associations between meat consumption and the prevalence of degenerative arthritis and soft tissue disorders in the adventist health study, California U.S.A. The Journal of Nutrition, Health & Aging, 10(1), 7–14.
Key, T. J., Papier, K., & Tong, T. Y. N. (2022). Plant-based diets and long-term health: findings from the EPIC-Oxford study. Proceedings of the Nutrition Society, 81(2), 190–198. https://doi.org/10.1017/S0029665121003748
Lewis, P. B., Ruby, D., & Bush-Joseph, C. A. (2012). Muscle soreness and delayed-onset muscle soreness. Clinics in Sports Medicine, 31(2), 255–262. https://doi.org/10.1016/j.csm.2011.09.009
Ma, Y., Griffith, J. A., Chasan-Taber, L., Olendzki, B. C., Jackson, E., Stanek, E. J., 3rd, Li, W., Pagoto, S. L., Hafner, A. R., & Ockene, I. S. (2006). Association between dietary fiber and serum C-reactive protein. The American Journal of Clinical Nutrition, 83(4), 760–766. https://doi.org/10.1093/ajcn/83.4.760
McDougall, J., Bruce, B., Spiller, G., Westerdahl, J., & McDougall, M. (2002). Effects of a very low-fat, vegan diet in subjects with rheumatoid arthritis. Journal of Alternative and Complementary Medicine (New York, N.Y.), 8(1), 71–75. https://doi.org/10.1089/107555302753507195
Menzel, J., Jabakhanji, A., Biemann, R., Mai, K., Abraham, K., & Weikert, C. (2020). Systematic review and meta-analysis of the associations of vegan and vegetarian diets with inflammatory biomarkers. Scientific Reports, 10(1), 21736. https://doi.org/10.1038/s41598-020-78426-8
Szeto, Y. T., Kwok, T. C. Y., & Benzie, I. F. F. (2004). Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition, 20(10), 863–866. https://doi.org/10.1016/j.nut.2004.06.006
Understanding acute and chronic inflammation. Harvard Health. (2020, April 1). https://www.health.harvard.edu/staying-healthy/understanding-acute-and-chronic-inflammation
You, T., Arsenis, N. C., Disanzo, B. L., & Lamonte, M. J. (2013). Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms. Sports Medicine (Auckland, N.Z.), 43(4), 243–256. https://doi.org/10.1007/s40279-013-0023-3
Nutrient-Rich Protein Package
Advice | ask a doctor: Is animal protein easier to absorb than plant protein?. The Washington Post. (2022, October 31). https://www.washingtonpost.com/wellness/2022/10/31/animal-plant-protein-absorption-digestion/
Anand, P., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., Sung, B., & Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25(9), 2097–2116. https://doi.org/10.1007/s11095-008-9661-9
Barnard, N. D., Goldman, D. M., Loomis, J. F., Kahleova, H., Levin, S. M., Neabore, S., & Batts, T. C. (2019). Plant- based diets for cardiovascular safety and performance in endurance sports. Nutrients, 11(1), 130–. https://doi.org/10.3390/nu11010130
Gardner, C. D., Hartle, J. C., Garrett, R. D., Offringa, L. C., & Wasserman, A. S. (2019). Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States. Nutrition Reviews, 77(4), 197–215. https://doi-org.ezp-prod1.hul.harvard.edu/10.1093/nutrit/nuy073
Kim, H., Caulfield, L. E., Garcia-Larsen, V., Steffen, L. M., Coresh, J., & Rebholz, C. M. (2019). Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. Journal of the American Heart Association, 8(16), e012865–e012865. https://doi.org/10.1161/JAHA.119.012865
McDougall, J. (2002). Plant foods have a complete amino acid composition. Circulation (New York, N.Y.), 105(25), A197–A197. https://doi.org/10.1161/01.cir.0000018905.97677.1f
Melina, V., Craig, W., & Levin, S. (2016). Position of the Academy of Nutrition and Dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970–1980. https://doi.org/10.1016/j.jand.2016.09.025
Naghshi, S., Sadeghi, O., Willett, W. C., & Esmaillzadeh, A. (2020). Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ (Clinical research ed.), 370, m2412. https://doi.org/10.1136/bmj.m2412
Song, M., Fung, T. T., Hu, F. B., Willett, W. C., Longo, V. D., Chan, A. T., & Giovannucci, E. L. (2016). Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Internal Medicine, 176(10), 1453–1463. https://doi-org.ezp-prod1.hul.harvard.edu/10.1001/jamainternmed.2016.4182
Tomova, A., Bukovsky, I., Rembert, E., Yonas, W., Alwarith, J., Barnard, N. D., & Kahleova, H. (2019). The Effects of vegetarian and vegan diets on gut microbiota. Frontiers in Nutrition, 6, 47. https://doi.org/10.3389/fnut.2019.00047
Other:
Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: the Adventist Health Study-2 cohort | International Journal of Epidemiology
International Journal of Epidemiology, Volume 47, Issue 5, October 2018, Pages 1603–1612, https://doi.org/10.1093/ije/dyy030
Shaw KA, Zello GA, Rodgers CD, Warkentin TD, Baerwald AR, Chilibeck PD. Benefits of a plant-based diet and considerations for the athlete. Eur J Appl Physiol. 2022 May;122(5):1163-1178. doi: 10.1007/s00421-022-04902-w. Epub 2022 Feb 12. PMID: 35150294.
Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials https://pmc.ncbi.nlm.nih.gov/articles/PMC7926405/
Song M, Fung TT, Hu FB, Willett WC, Longo VD, Chan AT, Giovannucci EL. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern Med. 2016 Oct 1;176(10):1453-1463. doi: 10.1001/jamainternmed.2016.4182.